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The development of a turbulent boundary layer in a strong adverse pressure 
gradient can be described by the two-layer model proposed by Stratford (1959), 
in which the outer part of the flow is assumed to be unmodified by the pressure- 
rise and the inner part described by two local parameters, the surface stress and 
the pressure gradient. The description suggests that the modification of the 
original flow is in some sense self-preserving, and it is shown here that self- 
preserving development of the modification is consistent with the Reynolds 
equations of turbulent flow in particular pressure distributions. For these distri- 
butions, the predictions of the two-layer model are confirmed without any need 
to make the sharp and arbitrary distinction between the two parts of the 
boundary layer. 

1. Introduction 
The concept of self-preserving development is important for the theory of 

turbulent flow, not only because it predicts properties of the rather special self- 
preserving flows but also because the self-preserving flows are asymptotic states 
which other, qualitatively similar, flows approach after long development. For 
example, boundary layers can develop in self-preserving fashion in particular 
adverse pressure gradients, and a layer which is not initially of the self-preserving 
form approaches that form with downstream development. It follows that the 
development in an arbitrary distribution of pressure could be calculated from the 
properties of the self-preserving layers so long as the layer structure always 
resembles closely the structure of the self-preserving layer appropriate to the 
current pressure gradient. This condition severely restricts the form of the 
pressure distribution, since the turbulent motion in the outer part of a boundary 
layer changes comparatively slowly in response to changes in pressure gradient. 
Rapid response is confined to the flow near the surface, an observation which led 
Stratford (1959) to propose a two-layer model for development in strong adverse 
pressure gradients. In the outer part, the turbulent motion is supposed unmodi- 
fied by the pressure rise, but the inner part is assumed to be an equilibrium layer 
(Townsend 1961 a)  with motion determined by two parameters, the surface stress 
and the local pressure gradient. With the model, a good description of layer 
development is possible but neglect of the transition region between the com- 
pletely adjusted flow in the true equilibrium layer and the unmodified flow a t  
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the outer edge of the boundary layer introduces some uncertainty in the validity 
of the predictions. A similar difficulty with the two-layer model used to describe 
the effects of a change of surface roughness has been resolved by showing that the 
two-layer model is a special case of a class of self-preserving flows and that the 
development is much the same whatever self-preserving flow model is used 
(Townsend 1965). The essential feature of these flows is that Reynolds stress and 
total head are very nearly constant along streamlines lying outside a critical 
surface whose approximate position can be set by considering the balance of 
turbulent energy. Along streamlines within the critical surface, total head and 
Reynolds stress undergo changes, and it is these changes that may be of self- 
preserving form in suitable conditions. The important difference between this 
class of self-preserving flow and the better-known self-preserving flows in jets 
and wakes is that the Reynolds stress does not become zero outside the flow. 

The present problem is the development of a turbulent boundary-layer of 
considerable initial thickness within a region of adverse pressure gradient, especi- 
ally in the early stages when the critical surface is much closer to the wall than 
the outer edge of the layer. The changes caused by the pressure field can be 
described completely by distribution functions describing the changes of total 
head and Reynolds stress along streamlines, and the functions must become 
very small outside the critical surface and take equilibrium forms very near the 
wall. Outside the critical surface, the modification of the flow is entirely an 
effect of increased separation of the streamlines consequent on the pressure rise 
and a displacement caused by the flow changes within the critical surface. It 
will be shown that, in certain pressure distributions, flows described by distribu- 
tion functions of self-preserving form are dynamically consistent to the extent 
that they can satisfy the Reynolds equations for the mean velocity and the 
turbulent energy. 

2. Nature of the flow 
Consider a turbulent boundary layer on a flat surface, z = 0, with two- 

dimensional mean flow in the Ox-direction and subjected to an external pressure 
gradient. At x = 0, the boundary layer is assumed to have a general resemblance 
to one developing in zero pressure gradient with the same skin friction, so that 
the initial velocity distribution is of the logarithmic form 

u, = u,/klog (./zl) (3.1) 

for values of z less than about one-sixth of the total thickness of the layer. Here 
u1 is the friction velocity, Ic is the Kkman constant (approximately 0.41)) x1 is 
the roughness length of the surface. (N.B. The suffix 1 is used to denote conditions 
at x = 0, the suffix 0 for conditions at  a positive value of x.) For simplicity, 
roughness lengths are used to describe the effect of the surface on the additive 
constant of the logarithmic distribution. For an aerodynamically smooth surface, 
x1 = v/ul exp ( - A )  z O-lv/u,. For rough surfaces, z1 is commonly about one- 
twentieth of the average height of the roughness elements. In  both cases, the 
profile (2.1) is valid only for z/zl greater than a number of order one-hundred but 
the thickness of the excluded region is usually negligible. For example, in 
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a boundary layer developing in zero pressure gradient with a skin friction 
coefficient of 3 x and 
the logarithmic profile is a good approximation to within 

Consistently with the assumption of a logarithmic profile and small height of 
the critical surface, the variation of the Reynolds stress can be neglected and the 
stress put equal to the surface value, u: in the kinematic units used in this paper. 
In fact, the fractional change is of order z/8,,. 

If the layer enters a region of strong pressure gradient, general arguments 
show that Reynolds stress is nearly unchanged along streamlines that lie above 
the critical surface z = zc(z) (Townsend 1961 b). Since the stress is nearly inde- 
pendent of height at x = 0, the stress gradient remains negligible compared with 
the pressure gradient and total head is conserved along streamlines in the same 
region, i.e. 

the ration of z1 to the total thickness 8, is about 
8, of the wall. 

- -  

for z 9 z,, 
+U2 + P = fn (9) 

7 = u; 

where P is the (kinematic) pressure rise from x = 0 and 9 is the stream function. 
We now make the self-preserving assumption that 

@ = @1(P+W2)+@Sf(U/US) ,  (2.3) 

is the stream-function for x = 0 expressed as a function of total head. The 
second term describes the changes of total head caused by stress gradients and is 
negligible for large values of z / z ,  or of U/V,.  The quantities, @s and U,, are scales 
of stream-function and velocity, depending only on x. The corresponding distri- 
bution of Reynolds stress is 

where u," is a scale of Reynolds stress and the function F( U/U,), like f (  V/U,),  
becomes small for large values of UjU,. Figure 1 shows in diagrammatic form the 
flow system and an outline of the notation, and figure 2 the possible distributions 
of stream-function and Reynolds stress as functions of [ J .  

The choice of the self-preserving forms has been made to satisfy the outer 
boundary conditions on the region of modified flow. Near the surface, the flow 
forms an equilibrium layer with a velocity distribution determined by the local 
stress-profile, and this requirement forms the inner boundary condition. For 
a linear variation of stress in the equilibrium layer, 

7(X, 2) = T(X, 0) + a(z)z, 

T = u:+u~F(U/U,),  (2.4) 

where a is the stress-gradient, and comparison with (2.4) shows that 

u: + U,2P(O) = U2,) (2.5) 

where ui is the local surface stress. In  general, the velocity distribution satisfies 
conditions that are not simple, but they are sufficient, with the stress conditions, 
to determine completely the variations of the scales. 

49 Fluid Meoh. 23 
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Critical surface 

I 
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Toral head varying along 

T.ncaI surfacc sriess = u$ 

Roughness length I, 0 Roughness length z, x-r 

Zero pressure gradient ------+- Strong adverse pressure ,gradient 

FIUURE 1. Flow diagram showing critical surface and indicating notation. 

0 U 

FIGURE 2. Self-preserving distributions of stream-function and Reynolds stress, expressed 
as functions of mean velocity. (N.B. Only the scale of stream-function varies during 
self-preserving development .) 
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3. Development with small surface-stress 
For a linear variation of stress, there are theoretical and experimental grounds 

for believing that the velocity distribution in the equilibrium layer is given by 

7 

I' = CL+ i ( C Y Z ) ~  for CYZ 9 T ~ ,  (3.1) 
ko 

where I J  o-ukopo - -  g (::) -O - 2 ( 1 - B )  1 , (3.2) 

and 

Supposing the greater part of the equilibrium layer to  satisfy the condition of 
small surface stress, az >> u& we have from (3 .1 )  that 

k,  = k / ( l  - B )  a 0-50 (Townsend 1961a).  

(3.3) 

Choosing ~ , q  so that j(Un/CG) = - 1, comparison with thc self-preserving form 
( 2 . 3 )  shows that, necessarily, 

(3.4) 1 $s = $l(P+W,2), 
a$s = q, 

i7$& = a ,  

where a. is a constant. Turning to the stress distribution. 

T = Ui + CYZ 

= uo" + @:( u - Uo)2, 

itrid for consistency with the self-preserving form, 

u; + u p (  uo/ Us)  = u:, 

us/Ih = const. 

( 3 . 5 )  

It is necessary to assume that the variation of @.l(P + ZJ2) is much less than that 
of $, which is nearly true if 

for values of U in the equilibrium layer. The condition is satisfied if 

( C , / C f ) +  = P+A, 

is moderately large. From (3 .1 )  and (3.6), the ratio uJUq is constant and can be 
put equal to  one. 

The combined development conditions (3 .4 )  and (3 .6 )  require constancy of 
Uo and uo, although a is varying, which is consistent with equation ( 3 . 2 )  only if 
un = 0, when C i  = 0. If k(2P+ U:)~Iul  is moderately large, the rate of variation 

49-2 
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of U, for constant %co implied by the variation of a is comparatively small. TO 
show this, use the development conditions (3.4) and (3.6) towriteequation (3.2) as 

-3(1-B) , (3.8) u, = t(2P + u;)& + t - log _- - -(2P + U i ) &  - 1 11 1 u1 [ (4tZ( - Fa)'Zz1 [ k 
Ic k( 1 - t2 )3ZO lcl 

where t is the stress-ratio parameter uo/ul, and E', = P(U$<). The second term 
varies much more slowly with P than the first and is much less than it for large 
values of k(ZP+ UE)t/u,. For example, with k ( 2 P +  U;)*/ul about six, t = 0-3, 
-Fa = 1, the ratio is one-tenth. Then, nearly 

U ;  = [2t2/(1- t2)]P and P+&Ui = P / ( 1 - t 2 ) .  (3.9) 

It is shown in fj 4 that cx = dP/dx in self-preserving flow and so, from the relation 
a$s = U:, it  can be shown that 

(3.10) 

for large values of k(2P + Ui)*/ul. The large values of this parameter correspond 
with large Reynolds number of flow and, in these conditions, the streamwise 
variation of U, is slow although a varies rapidly. The conditions of constant L& 
and U ,  are then satisfied to an approximation similar to those used in the theory 
of self-preserving boundary layers. 

To summarize, the development conditions set by the boundary conditions are 

u; = [W/( 1 - t"] P,  

u," = u," = u?( 1 - t"/( -Fa). J 

4. Dynamical consistency of the self-preserving flow 
The Reynolds equation for the mean velocity is 

From the self-preserving form for the velocity distribution (2 .3 ) ,  by differentia- 
tion with respect to  x with constant $, 

Since Vs is constant during self-preserving development, 

(4.2) 

A t  constant x, 
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and the equation for the mean velocity reduces to 

To the approximation of small surface-stress, f'(UJus) = 0 from equation (3.3), 

Since U i  = the final form of the equation of motion is 

The coefficient (l/U,) (dllr,/dx) is of order ku,/Pi and, to the approximation in use, 
the last term is negligible. Then the Reynolds equation of mean flow is satisfied 
by self-preserving distributions of velocity and stress and the distribution 
functions are related by 

(4.7) yF' = f ' .  

Consistency with the Reynolds equation for the turbulent energy can be 
verified in a similar way. Using the analogous forms for the distributions of 
turbulent kinetic energy, lateral energy-flux and kinetic-energy dissipation rate, 

Now d$,Jdx = $Lu and q?; < ks /U;  in the current approximation, so nearly 

Since 

(4.10) 

and is small, the energy equation is also satisfied by self-preserving distributions. 
It is interesting that the term representing advection of kinetic energy is small 
everywhere. 



7 7 4  A .  A .  Townsend 

5. Solutions of the development equations 
The development equations are 

where, by equation (4.7), 
- Ffa)  = f '  $, (5.21 

and depends on the velocity distribution functiollf(q). All that is known about 
f ( 7 )  is that it  takes the form, 

for small values of 7 - a, and approaches zero for large values of 7. However, the 
dependence of -F(a )  on the form of f (7)  is weak. For example, for zero Uo 
(a  = 0 ) ,  the most rapid approach to zero is obtained with the form 

(a) ffq) = @$q3-1 for q G (6/ki)*,  
= o  for 7 2 (6/k;)5. 

A very slow approach of total head to the undisturbed values, roughly as z-l, is 
obtained with 

(b )  f(7) = - exp ( - Qk;T3). 

For (a) ,  -F(O) = $(+kg)*, 

and for (b )  -F(O) = (g)! $(&kg)* = 0.903 $(Qkg)a. 

The insensitivity to the form of the velocity distribution allows use of the 
simple form, 

f(q) = kk;a(q - a)2+ i k ; (q  - a)3 for q < 7, 
= o  for q 2 vo, 

where 7, satisfies the equation 

Then, - F(a)  = *kg(yo - a)2 

and we proceed to calculate the development for a constant stress ratio. From 
the fourth of the development conditions (5.1), 

and 8koa/( - Fa)$ may be calculated as a function of -F(u)  from equations (5.3) 
and (5.4) (table 1). For any value of t ,  - F(a)  can be found as a function of P 
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arid the relation between pressure gradient and pressure rise obtained from 

a = u,/u, 
0 
0.2 
0.4 
0- 6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

N.B. 

24-FJ-*lko 
2.884 
2.788 
2.698 
2-614 
2.535 
2-462 
2.393 
2.328 
2.268 
2.21 1 
2.157 

alc,/2( - F d  
0 
0.0717 
0.1483 
0-2295 
0.3156 
0.4062 
0.5015 
0.6017 
0.7054 
0.8109 
0.9272 

It is assumed that k, = 0.50. 

TABLE 1 

For t = 0, 8( - Fa)gki3 = 6/ki and 

(5.7) 

equivalent to a previous result for zero-stress development using a two-layer 
model (Townsend 1961b). Figure 3 shows the predicted relations between 
pressure gradient and pressure rise for values oft below 0.5. A curious feature is 
that the adverse pressure gradients are stronger for development with finite 
stress, t z 0.3, than with zero surface-stress, t = 0. A similar behaviour is found 
with the two-layer model and receives some support from the observations of 
Schubauer & Klebanoff (see Townsend 1961 b). 

The conditions for the existence of the self-preserving development can now 
be put in more explicit form. They are (i) that P&/ul should be large, (ii) that the 
surface stress is small enough to permit use of the velocity distribution (3.1), and 
(iii) that the thickness of the whole boundary layer is large enough to contain 
the modified flow, The second condition is that ax 9 T,, for most z within the 
modified layer. In  terms of ( U  - U,), it  is 

$ki( U - Ug)' + t2U: 

and, substituting the value of (U-U,) at the edge, i.e. (qo-a)u, and using 
equations (5.1) and (5.4), it  becomes 

1 - t 2  9 t2  or t 2  < 4. (5.8) 
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(a) 

( 6 )  

FIGURE 3. Variation of pressure gradient during self-preserving development. The 
numbers in (a) me the values of (klu,) (+P)* for the particular curve. a, is the pressure 
gradient for zero surface-stress. (N.B. k, = 0.50). 
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The third condition is that the stream function at the edge of the modified layer 
should be considerably less than the stream function at the edge of the whole 
boundary layer, i.e. 

where CL = 40u0 = (a( -Fa)-& + 2/k0)  ( 1  - t2)*u, is the velocity a t  the edge of the 
modified layer, and ri ,  is the free-stream velocity at x = 0. For small values 
oft, the condition is nearly that 

or, let us say, less than e--P where q is about two. Then the condition becomes 

(5.10) 

where cp = 2 P / U z  and y = u,/(kU,), and limits the coefficient of pressure rise to  
something less than one and usually about one-half. After this pressure rise, the 
modified region extends over most of the layer, and any self-preserving flow is 
an equilibrium flow of the kind described by Clauser (1956). 

6. Discussion 
The result of the analysis is that, in special pressure distributions, the boundary 

layer can develop in a way that is self-preserving in the sense used in Q 2. The 
whole flow is very far from being self-preserving in the usual sense. Dynamical 
consistency of the self-preserving development implies that the development of 
a real flow in the same pressure gradient will be very similar, independently of 
the exact nature of the turbulent transfer process which determines the function 
specifying the velocity profiles. As in the similar change-of-roughness flows 
(Townsend 1965), the possible forms are restricted very severely by the imposed 
boundary-conditions, particularly by the necessity for a wall equilibrium layer 
of the mixing-length type. The two-layer model satisfies the conditions, and the 
predictions obtained by its use are hardly distinguishable from those obtained 
by any other plausible velocity distribution. Except for the academic interest 
in a new kind of self-preserving flow, the value of the work lies in the theoretical 
support for the usefulness of the two-layer approximation for pressure distribu- 
tions of special kinds. 

One of the family of pressure distributions allows development with con- 
tinuously zero wall-stress, essentially similar to the flow discovered by Stratford 
(1959), and the distribution resembles closely that calculated by him using a 
two-layer model. The others refer to development with a small, constant wall- 
stress and have not been studied experimentally. All the pressure distributions 
are generally similar in form with a rapid decrease of pressure gradient (figure 3), 
and they have a qualitative resemblance to the pressure distributions found in 
boundary layers approaching separation. Remembering that the velocity and 
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stress distributions in the self-preserving flows are the result of a settling-down 
process, it  is plausible that the velocity and stress distributions in a separating 
layer may resemble closely the distributions in the self-preserving flow which has 
the same current values of pressure rise and surface stress. Then the two-layer 
model may be used to discuss separating flows with no more uncertainty about 
its accuracy than would be felt for the self-preserving flows. 

Two small points should be mentioned. First, no self-preserving development 
is possible if the distribution of velocity in the equilibrium layer is logarithmic, 
as it will be if the surface stress is comparable with the initial stress. Secondly, 
the alternative self-preserving form 

II. = II.I(P+ W2) [1 +f(U/v,)l 
may be used with essentially similar results. It must be used if the methods of 
this paper are to apply to the change of roughness flow, but no advantage is 
found over the more direct formulation (Townsend 1965). 
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